and on simplifying = x/tb(b-x). This, of course, when b = a, becomes x/ta(a-x), which is expression (1).

CONTRIBUTION FROM THE GEORGIA SCHOOL OF TECHNOLOGY ATLANTA, GEORGIA RECEIVED JULY 22, 1930 PUBLISHED OCTOBER 6, 1930 H. B. FRIEDMAN H. K. FULMER

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF KITASATO INSTITUTE]

THE SKRAUP REACTION WITH CERTAIN AZO COMPOUNDS

By Konomu Matsumura

RECEIVED FEBRUARY 27, 1930

Published October 6, 1930

In the course of an investigation of the possible explanation of the reaction mechanism of the formation of p-phenanthroline in the Skraup reaction with p-aminoresorcin dimethyl ether, p-benzene-azo-resorcin dimethyl ether was subjected to the Skraup reaction and the product was found unexpectedly to be also p-phenanthroline; the yield in this case was three times as good as in the same reaction with p-aminoresorcin dimethyl ether. The formation of p-phenanthroline was also established, in the same way, from p-benzene-azo-resorcin, whereas from p-aminoresorcin, no crystalline matter could be isolated, on working under the same conditions.

From these facts it seemed that in case of the Skraup reaction with rather unstable amines, better results might follow if the corresponding azo compounds were used as reactants, and here I have extended this study to several azo compounds.

Concerning the study of the Skraup reaction with azo compounds, work has been reported by Claus and Stegelitz¹ and later by Lellmann and Lippert.² They established the formation of the corresponding ring compounds in this reaction, but the yield in each case was reported to be very poor. In the present investigation the reactions were carried out with the addition of arsenic acid, this being the only difference from the methods of previous investigations.

Table I

Effect of Arsenic Acid in the Skraup Reaction with Azo Compounds

		Yield, g.			
Reactants	Products	Presence of HaAsO4	Absence of H:AsO4		
Azobenzene, 10 g.	Quinoline picrate	0.5	0.55		
	6,6'-Diquinolyl	5.7	1.2		
p-Benzene-azo-resorcin	Quinoline	2.0-2.5	1.4		
dimethyl ether	p-Phenanthroline	1.35-1.5	0.3		

¹ Claus and Stegelitz, Ber., 17, 2380 (1884).

¹ Lellmann and Lippert, ibid., 24, 2623 (1891).

First of all, in order to find the influence of the presence of arsenic acid in the reaction, the following two pairs of experiments were performed for the sake of comparison, with the result that, in the Skraup reaction with azo compounds, the presence of arsenic acid gave far better yields (Table I).

In view of this fact, it seems that the action of arsenic acid in the Skraup reaction may be other than it has previously been thought to be. In the Skraup reaction with *p*-amino-azobenzene, *p*-phenanthroline could be isolated in a satisfactory yield in accordance with the scheme

The preparation of p-phenanthroline was reported by Kaufmann and Radošević³ by the Skraup reaction with 6-aminoquinoline and recently by Smith by the same reaction with p-phenylenediamine. The Skraup reaction with p-amino-azobenzene, however, appears to be the most suitable for preparing it in quantity, because p-amino-azobenzene is more easily accessible than 6-amonoquinoline or p-phenylenediamine.

In the Skraup reaction with benzene-azo-5-hydroxy-8-quinoline, the yield of 10-hydroxy-m-phenanthroline was very poor on working up under a variety of conditions.

La Coste,⁵ in the Skraup reaction with *m*-nitraniline, could isolate an hydroxy-*m*-phenanthroline (m. p. 159-60°) as a by-product and, as to the position of the hydroxyl group, he concluded, under his reasonable interpretation, that the substance might be 2-hydroxy-*m*-phenanthroline.

The hydroxy-m-phenanthroline he had obtained appears to be very near in its properties to 10-hydroxy-m-phenanthroline (m. p. 157-158°), which I have now obtained.

Pictet and his co-worker⁶ obtained phenotripyridine in good yields in the Skraup reaction with 1,3,5-triaminobenzene. Chrysoidin was now submitted to the Skraup reaction, with the expectation of obtaining one of its structural isomers in accordance with the equation

- ⁸ Kaufmann and Radošević, Ber., 42, 2612 (1909).
- 4 Smith, This Journal. 52, 397 (1930).
- ⁵ La Coste, Ber., 16, 674 (1883).
- ⁵ Pictet and Barbier, Bull. soc. chim., [3] 13, 28 (1895).

$$C_6H_6-N=N$$
 NH_2
 NH_2

After a tedious process of separation, a minute amount of colorless needles (m. p. 155-156°) could be isolated by means of petroleum ether but the scarcity of the material has rendered its further characterization impossible.

Experimental

General Procedure for the Skraup Reaction with Azo Compounds.—A mixture of monoazo compound ($^{1}/_{20}$ mole), glycerin (18 g.), concd. sulfuric acid (18 g.) and arsenic acid (9 g.) was gently refluxed in an oil-bath (bath temperature $^{1}60-^{195}$ °) for two to thirty hours. The flask contents, which consisted of a hard black lump on cooling, was digested with hot water and the filtered liquid, after being made alkaline, was distilled with steam. The distillate was shaken with ether. On evaporating the solvent, after thorough drying with sodium sulfate, quinoline could be isolated. It was identified by converting it into its picrate.

From the residue of the steam distillation, by means of benzene, another component of the products could be isolated. Further purification was effected by recrystallization of its sulfate from hot alcohol.

In the case of 10-hydroxy-*m*-phenanthroline, instead of benzene extraction, the material was extracted first with cold alcohol, then with benzene, ether and petroleum ether successively.

TABLE II
SKRAUP REACTIONS
Reaction

time.							
Reactant	G.	hrs.	Products	Yield, g.			
1 p-Benzene-azoresorcin dimethyl	10	21	Quinoline	2.5			
1 ether			<i>p</i> -Phenanthroline	1.5			
2 p-Benzene-azoresorcin	8.85	15	Quinoline	2.3			
2			p-Phenanthroline	0.07			
3 Azobenzene	10	15	Quinoline picrate	0.5			
3			6,6'-Diquinolyl	5.7			
4 p-Amino-azobenzene	10	30	Quinoline	2.5			
4			<i>p</i> -Phenanthroline	7.7			
5 p-Nitrobenzene-azo-4-naphthol-1	15	21	p-Phenanthroline	3.2			
6 p-Chlorobenzene-azo-phenol	10	21	6-Chloroquinoline	5.2			
7 Benzene-azo-5-hydroxy-8-quino-	15	2	Quinoline	2.6			
7 line			10-Hydroxy-m-phenanthroline	e 0.25			
8 Chrysoidine	20	3	Quinoline	2.5			
			Minute amount of crystals				

T	ABLE II ((Conclude	d)			
Compound		Prope	erties			M. p., °C.
1 Quinoline picrate	Citron ye	llow need	lles from	benzene		203
1 p-Phenanthroline	Colorless needles from benzene				173	
2 Quinoline picrate						203
2 p-Phenanthroline						173
3 Quinoline picrate						203
3 6,6'-Diquinolyl Color	rless plates	of silky l	uster fro	m dilute	alcohol	179-180
4 Quinoline picrate						203
4 p-Phenanthroline						173
5 p-Phenanthroline						171-172
6 6-Chloroquinoline	Colorless	prisms fi	om benz	zene		41-42
picrate	Yellow ha	air-like n	eedles fr	om aceto	ne	217
7 Quinoline picrate						203
7 10-Hydroxy-m-phenanthroline	Colorless	needles	from be	nzene.	Soluble	
	in dii. I	HCl and	NaOH.	Ferric o	chloride	
	reaction	n is dark	violet			157-158
8 Quinoline picrate						203
8 Minute amt. crystals	Colorless	needles	from p	etroleum	ether.	
	Soluble	in dil. H	IC1			155-156
Compound	Carbo Caled.	on, % Found	Hydro: Calcd.	gen, % Found	Nitro Caled.	gen, % Found
1 Quinoline picrate	5 0. 2 8	50.35	2.79	2.85	15.64	15.75
1 p-Phenanthroline	80.00	80.19	4.44	4.72	15.56	15.61
2 p-Phenanthroline					10.94	10.91
3 6-6'-Diquinolyl	84.38	84.58	4.69	4.96	15.56	15.74
4 p-Phenanthroline	80.00	79.85	4.44	4.49	15.56	15.31
5 p-Phenanthroline	80.00	80.12	4.44	4.66	15.56	15.76
6 6-Chloroquinoline picrate	45.86	46.06	2.29	2.53	14.27	14.03
7 10-Hydroxy-m-phenanthroline	73.47	73.63	4.08	4.43	14.29	14.02

TABLE III

DERIVATIVES OF 10-HYDROXY-m-PHENANTHROLINE

			Water of crystallization			Analysis		
	Formula	Properties	Calcd.	Found	С	alcd.	F	ound
Sulfate	C12H8ON2, H2SO4	Yellow needles from a (dec.); easily sol. in		D				
Chloro-	[C ₁₂ H ₈ ON ₂ (HCl) ₂]	Yellow needles from			C,	23.76	c.	23.92
platinate	PtCl ₄ ·1¹/ ₂ H ₂ O	dil. HCl, m. p. 309	° 4.27	4.28	Н,			
					Pt,	32.21	Pt,	31.21
Picrate	C12H1ON2'- C6H1O7N2	Yellow needles from alc., m. p. 237° (dee	2.)		N.	16.47	N.	16.75

I desire to express my best thanks to Professor Hata for the interest which he has kindly taken in this work.

Summary

- 1. It has been reported that in the Skraup reaction with azo compounds, the presence of arsenic acid gives better results.
- 2. In connection with this fact, the following quinoline compounds have been prepared; quinoline, p-phenanthroline, 6,6'-diquinolyl, 6-chloroquinoline and 10-hydroxy-m-phenanthroline, of which the last is a new compound.

Tokyo, Japan